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ABSTRACT
The Power Generalized DUS transformation provides improved flexibility when deal-
ing with lifetime and reliability data. It provides parsimonious model and is a pow-
erful tool for statistical modeling and analysis of a parallel system or maximum
random variable. The empirical success and adaptability of the PGDUS transforma-
tion further highlight its value in diverse applications. The Power Generalized DUS
powered inverse Rayleigh distribution (PGDUS-PIR) is a new distribution that we
introduced in this paper and that was derived by using the PGDUS transforma-
tion on a baseline distribution, the powered inverse Rayleigh (PIR) distribution. Its
statistical features are discussed in detail. The unknown parameters are estimated
using the maximum likelihood method and the maximum product spacing method.
To better understand the behavior and applicability of the PGDUS-PIR distribu-
tion, a simulation study was carried out, which led to more accurate and reliable
statistical modeling and analysis. Two sets of real data are used to compare the per-
formance of the proposed distribution with some distributions that are currently in
use. Stress-strength reliability is an essential aspect of lifetime data analysis, provid-
ing a systematic approach to evaluate the reliability and durability of components
and systems under varying stresses. This concept is essential to ensure the safety,
quality and durability of products in many industries. We derived the single- and
multicomponent stress-strength reliability of the PGDUS-PIR (α, β, θ) distribution.

KEYWORDS
Powered inverse Rayleigh distribution; PGDUS transformation; Maximum
likelihood estimation; Maximum Product Spacing estimation; Stress-Strength
Reliability

1. Introduction

The Rayleigh distribution was first presented by [11] in connection with an issue in
the fields of optics and acoustics. The inverse Rayleigh (IR) distribution proposed by
[14] is a continuous distribution obtained from the Rayleigh distribution by taking the
reciprocal of a Rayleigh random variable. It is commonly used in reliability engineering
and survival analysis because of its ability to model the lifetimes and failure times of
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systems and components. According to the transformation, the IR variable is given as

X = 1/Y,

where Y is a Rayleigh random variable. Then the probability density function (pdf)
of the IR distribution, with a scale parameter β, is given by

fX(x) =
2

β

e
−1

βx2

x3
; x > 0 , β > 0. (1)

The IR distribution is used in reliability engineering to represent component failure
time, particularly when failures occur due to stresses that are inversely proportional
to a primary variable. Whenever inverse connections among variables are seen in med-
ical and biological studies, the IR distribution is appropriate for modeling lifetimes in
survival analysis. IR distribution is used in environmental research to examine data
that show heavy-tailed features, including pollutant concentrations or extreme weather
events. Numerous characteristics of the IR distribution have been examined by [15].
Through the power transformation, which [4] initially presented, [1] introduced the
powered inverse Rayleigh (PIR) distribution. The PIR distribution offers a versatile
tool for modeling lifetime and reliability data with decreasing hazard rates and vary-
ing tail behaviors. Its applications in reliability engineering, survival analysis, and
environmental studies demonstrate its utility in capturing real-world phenomena. The
flexibility introduced by the shape parameter α allows for more accurate modeling
and analysis, making it a valuable addition to the family of lifetime distributions. If X
follows an IR distribution with scale parameter β, then the random variable Z = Xα

follows a PIR distribution with shape parameter α and scale parameter β. Then, the
pdf and cumulative distribution function (cdf) of the PIR distribution are defined as

fZ(z) =
2α

β

e−
1

βz2α

z2α+1
; z > 0, α > 0, β > 0, (2)

FZ(z) = e−1/βz2α

; z > 0, α > 0, β > 0. (3)

The DUS transformed PIR distribution (see [7]) is a novel and flexible distribution
that combines the characteristics of the PIR distribution with the DUS transformation.
The DUS transformation proposed by [9], without adding more parameters, allows for
even greater adaptability in modeling various types of data, particularly in fields such
as reliability engineering and survival analysis. The DUS transformation of a baseline
distribution with pdf f(b) and cdf F (b) can be defined as

g(b) =
f(b)eF (b)

e− 1
,

G(b) =
eF (b) − 1

e− 1
.

It is possible to model real life data using DUS-PIR distribution more effectively.
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Hence, pdf and cdf of DUS-PIR distribution are

g(z) =
2α

β(e− 1)

e−1/βz2α

ee
−1/βz2α

z2α+1
, z > 0, α > 0, β > 0, (4)

and

G(z) =
ee

−1/βz2α − 1

e− 1
, z > 0, α > 0, β > 0 (5)

respectively.
The power generalized DUS (PGDUS) transformation provides greater flexibility

in modeling various types of data (see [13]). This allows the transformed distribution
to capture a wider range of behaviors and patterns that might not be possible with
the baseline distribution alone. By applying the PGDUS transformation to an exist-
ing distribution, the resulting distribution often shows a better fit to empirical data.
PGDUS transformation can be used to model a parallel system in which each of the
components in the system is distributed as any DUS-transformed baseline distribu-
tion. This transformation is nothing but the exponentiation of DUS transformation,
and the pdf and cdf of the PGDUS transformed distribution are the following:

h(c) =
θ

(e− 1)θ
(eG(c) − 1)θ−1eG(c)g(c),

H(c) =

(
eG(c) − 1

e− 1

)θ
, c > 0, θ > 0.

where C be a random variable with pdf g(c) and cdf G(c) respectively. In [13], the
characteristics of PGDUS exponential distribution are described. [12] studied PGDUS
transformation of the Weibull and Lomax distributions to model the parallel systems
with independent components, in which the lifetimes of each of the components follow
the Weibull and Lomax distributions, respectively.

The stress-strength reliability can be mathematically represented as R = Pr(Y <
X), which evaluates the probability that the random strength of a component (X) will
be greater than its stress (Y ) (see [8]). It would be useful to study the distributional
properties, applications and stress-strength analysis of the PGDUS transformation
with the PIR distribution as a baseline model, since many of the lifetime data fits
with the PIR distribution.

The paper is structured as follows. In Section 2, we suggested a new lifetime dis-
tribution by making use of the PGDUS transformation with the PIR distribution as
a baseline model and then described its statistical properties in Section 3. Section
4 discussed the various estimate techniques, including the maximum likelihood and
maximum product spacing techniques, for the proposed distribution. In Section 5, a
simulation study is conducted to evaluate the estimators’ performance. In Section 6,
a set of successive precipitation data in March for Minneapolis/St.Paul and the daily
cases of COVID-19 is provided to examine the model. Section 7 discussed the theory of
stress-strength reliability in both single- and multicomponent models. Also, computa-
tion of the reliability estimate for single- and multicomponent stress-strength models
is carried out. In this section, a simulation study is also included to evaluate how well
the reliability estimations perform. In Section 8, a computation of Pr(Y < X), is
given for real-life data on the GPA strength of carbon fibers at two different lengths.
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In Section 9, conclusions are given.

2. Power Generalized DUS powered inverse Rayleigh Distribution

Assume that X is a random variable with a PIR distribution and that (2) and (3)
provide its pdf and cdf, respectively. So the pdf, cdf, and the failure rate function of
PGDUS transformed distribution, which is called the PGDUS-PIR with parameters
α, β and θ, can be defined as

h(x) =
2αθ

β(e− 1)θ
e−1/βx2α

x2α+1
ee

−1/βx2α(
ee

−1/βx2α

− 1
)θ−1

, x > 0, α > 0, β > 0, θ > 0,

(6)

H(x) =

(
ee

−1/βx2α

− 1

e− 1

)θ
, x > 0, α > 0, β > 0, θ > 0,

(7)

and

FR(x) =
2αe−1/βx2α

ee
−1/βx2α(

ee
−1/βx2α

− 1
)θ−1

βx2α+1

(
(e− 1)θ −

(
ee−1/βx2α − 1

)θ) , x > 0, α > 0, β > 0, θ > 0 (8)

respectively.

Figure 1. pdf plot for PGDUS-PIR distribution

Figure 2. cdf plot for PGDUS-PIR distribution
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Figure 3. Failure rate plot of PGDUS-PIR distribution

With varying values for each parameter, Figure 1, 2, and 3 show the graphical
representations of the pdf, cdf, and failure rate function of the PGDUS-PIR distribu-
tion, respectively. The failure rate plot of the PGDUS-PIR(α, β, θ) distribution has an
upside-down bathtub shape.

3. Statistical Properties

Statistical characteristics such as moments, order statistics, quantile function, and
entropy of the PGDUS-PIR (α, β, θ) can be obtained as follows:

3.1. Moments

The ath order raw moment is described as

µ1
a = E(Xa)

=

∫ ∞
0

xa
2αθ

β(e− 1)θ
e−1/βx2α

x2α+1
ee

−1/βx2α(
ee

−1/βx2α

− 1
)θ−1

dx (9)

Substitute w = e−1/βx2α

, dw = 2α
β
e−1/βx2α

x2α+1 dx

µ1
a =

θ

(e− 1)θ

∫ ∞
0

(−β logw)
−a
2α ew(ew − 1)θ−1dw

=
θ

(e− 1)θ

θ−1∑
k=0

(−1)k−
a

2αβ
a

2α

(
θ − 1
k

)∫ ∞
0

(log(u))
−a
2α eu(θ−k)du

=
θ

(e− 1)θ

∞∑
m=0

θ−1∑
k=0

(−1)k−
a

2αβ
a

2α

(
θ − 1
k

)
(θ − k)m

m!

∫ 1

0
um(log(u))

−a
2α du

=
θ

(e− 1)θ

∞∑
m=0

θ−1∑
k=0

(−1)k−
a

2αβ
a

2α

(
θ − 1
k

)
(θ − k)m

m!

(
1 +m

) a

2α
−1
e

−iπa
2α Γ

(
1− a

2α

)
,

(10)

where Re( aα) < 2 and Re(m) > −1.
By substituting the values a = 1 and a = 2, we can derive the corresponding mean
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and distribution’s variance. That is,

µ1
1 =

θ

(e− 1)θ

∞∑
m=0

θ−1∑
k=0

(−1)k−
1

2αβ
1

2α

(
θ − 1
k

)
(θ − k)m

m!

(
1 +m

) 1

2α
−1
e

−iπ
2α Γ

(
1− 1

2α

)
,

(11)

Re(
1

α
) < 2, Re(m) > −1.

µ1
2 =

θ

(e− 1)θ

∞∑
m=0

θ−1∑
k=0

(−1)k−
1

αβ
1

α

(
θ − 1
k

)
(θ − k)m

m!

(
1 +m

) 1

α
−1
e

−iπ
α Γ
(
1− 1

α

)
,

(12)

Re(
2

α
) < 2, Re(m) > −1.

Then,

Variance = µ1
2 −

(
µ1

1

)2
.

3.2. Quantile Function

Let D(i) denote the ith quantile of the PGDUS-PIR (α, β, θ) distribution. ith quantile
function can be obtained by solving the following condition

H(D(i)) = i, 0 < i < 1.

That is,

(
ee

−1

βD2α − 1

e− 1

)θ
= i

Therefor,

D(i) =

(
− β log

(
log
(
1 + i1/θ(e− 1)

)))−1

2α

, i ε (0, 1), α > 0, β > 0, θ > 0. (13)

3.3. Order Statistics

Order statistics are fundamental in statistical theory and practice, representing the
statistics obtained from the ordered values of a sample. Given a sample of size n from
the population PGDUS-PIR(α, β, θ), then the pdf and cdf of rth order statistics, X(r),
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of the proposed distribution can be defined as follows:

h(r)(x) =
n!

(r − 1)!(n− r)!
h(x)(H(x))r−1

(
1−H(x)

)n−r
=

2αθ(n!)e
−1

βx2α

(r − 1)!(n− r)!
ee

−1

βx2α (
ee

−1

βx2α − 1
)θ−1

βx2α+1(e− 1)θ

(
ee

−1

βx2α − 1

e− 1

)θ(r−1)(
1−

(
ee

−1

βx2α − 1

e− 1

)θ)n−r
=

(n!)2αθ

(r − 1)!(n− r)!
e

−1

βx2α ee
−1

βx2α

β(e− 1)nθ

(
ee

−1

βx2α − 1
)θr−1

x2α+1

(
(e− 1)θ −

(
ee

−1

βx2α

− 1
)θ)n−r

,

(14)

F(r)(x) =

n∑
s=r

(
n
s

)
(F (x))s(1− F (x))n−s

=

n∑
s=r

(
n
s

) (
ee

−1

βx2α − 1
)θs

(e− 1)nθ

(
(e− 1)θ −

(
ee

−1

βx2α

− 1
)θ)n−r

, (15)

where x > 0, α > 0, β > 0, and θ > 0.

3.4. Entropy

Entropy of lifetime distributions measures the uncertainty or randomness associated
with the time until an event of interest occurs. This concept is particularly useful
in reliability engineering and survival analysis, where understanding the variability
and predictability of lifetimes is crucial. Shannon entropy quantifies the uncertainty
associated with the lifetime of a component or system.

Renyi entropy is a generalization of the Shannon entropy, which provides a pa-
rameterized family of entropy measures that can be used to assess the uncertainty of
lifetime distributions. For a continuous random variable X representing the lifetime
with pdf h(x), the Renyi entropy of order Λ, where Λ > 0 and Λ 6= 1, is defined as:

τR(Λ) =
1

1− Λ
log

(∫
hΛ(x)dx

)

∫ ∞
0

hΛ(x)dx =

(
2αθ

β(e− 1)θ

)Λ ∫ ∞
0

e
−Λ

βx2α

x2α+1
eΛe

−1

βx2α (
eΛe

−1

βx2α

− 1
)Λ(θ−1)

dx

=

(
2αθ

β(e− 1)θ

)Λ Λ(θ−1)∑
k=0

(−1)k
(

Λ(θ − 1)
k

)∫ ∞
0

e
−Λ

βx2α

x2α+1
e(Λ(θ−1)−k+1)Λe

−1

βx2α

dx

=

(
2αθ

β(e− 1)θ

)Λ ∞∑
m=0

Λ(θ−1)∑
k=0

(−1)k
(

Λ(θ − 1)
k

) (
Λ(Λ(θ − 1)− k + 1))m

m!∫ ∞
0

1

x2α+1
e

−(Λ+m)

βx2α dx

=

(
2α

β

)Λ−1( θ

(e− 1)θ

)Λ ∞∑
m=0

Λ(θ−1)∑
k=0

(−1)k
(

Λ(θ − 1)
k

) (
Λ(Λ(θ − 1)− k + 1))m

(m!)(Λ +m)
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Hence,

τR(Λ) =
1

1− Λ
log

((
2α

β

)Λ−1( θ

(e− 1)θ

)Λ ∞∑
m=0

Λ(θ−1)∑
k=0

(−1)k
(

Λ(θ − 1)
k

)
(
Λ(Λ(θ − 1)− k + 1))m

(m!)(Λ +m)

)
, α > 0, β > 0, θ > 0, Λ > 0 and Λ 6= 1.

(16)

4. Estimation

Estimation techniques are critical tools in statistical analysis and are used to infer the
values of population parameters based on sample data. Here, we examine the method
of maximum likelihood estimation (MLE) and the method of maximum product spac-
ing estimation (MPSE). In this section, these techniques are applied to obtain the
parameter estimators of the PGDUS-PIR (α, β, θ).

4.1. Maximum Likelihood Estimation

Let x1, x2, ..., xn be a random sample of size n obtained from the PGDUS-PIR(α, β, θ)
distribution with pdf given in (6). The likelihood function will take the following form.

L(x) =

n∏
i=1

h(xi) =

(
2αθ

β(e− 1)θ

)n
e
∑n
i=1

−1

βx2α
i e

∑n
i=1 e

−1/βx2α
i

n∏
i=1

(
ee

−1/βx2α
i − 1

)θ−1

x2α+1
i

. (17)

logL = n log

(
2αθ

β(e− 1)θ

)
−

n∑
i=1

1

βx2α
i

+

n∑
i=1

e−1/βx2α
i − (2α+ 1)

n∑
i=1

log(xi)

+ (θ − 1)

n∑
i=1

log
(
ee

−1/βx2α
i − 1

)
= n log(2α)− n log(β)− nθ log(e− 1)− (2α+ 1)

n∑
i=1

log(xi)−
n∑
i=1

1

βx2α
i

+

n∑
i=1

e−1/βx2α
i + (θ − 1)

n∑
i=1

log
(
ee

−1/βx2α
i − 1

)
.

Solving the following system of equations will yield the MLE of the parameters α, β
and θ.

∂ logL

∂α
= 0 =>

n

α
+

1

β

n∑
i=1

x−2α
i log(xi)

(
2e−1/βx2α

i + 1
)
− 2

n∑
i=1

log(xi)+

2(θ − 1)

β

n∑
i=1

e−1/βx2α
i ee

−1/βx2α
i log(xi)(

ee
−1/βx2α

i − 1
) = 0.

(18)
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∂ logL

∂β
= 0 =>

1

β

(
1

β

n∑
i=1

x−2α
i − n

)
+

1

β2

n∑
i=1

e−1/βx2α
i

x2α
i

+
θ − 1

β2

n∑
i=1

e−1/βx2α
i ee

−1/βx2α
i

x2α
i

(
ee

−1/βx2α
i − 1

) = 0.

(19)

∂ logL

∂θ
= 0 =>

n

θ
− n log(e− 1) +

n∑
i=1

log(ee
−1/βx2α

i − 1). (20)

Those systems of equations can be solved using any numerical method to find the
estimators.

In order to obtain alternative estimates of the parameters, we consider MPS esti-
mation.

4.2. Maximum Product Spacing estimation

The MPSE method is based on the concept of spacing, which are differences of the
CDF, evaluated for a pair of consecutive-order statistics. It aims to maximize the
geometric mean of the spacings, there by ensuring a good fit between the model and
the observed data. Let x(1) < x(2) < ... < x(n) be an ordered random sample of size
n drawn from the PGDUS-PIR(α, β, θ) distribution with cdf H(x, θ). Then we can
define the spacing of the sample as

Si = H(x(i))−H(x(i−1)) =

(
ee

−1/βx2α
(i) − 1

e− 1

)θ
−
(
ee

−1/βx2α
(i−1) − 1

e− 1

)θ
, i = 1, 2, ..., n+ 1.

(21)

Let the geometric mean will be

A =

( n+1∏
i=1

Si

)1/n+1

=

( n+1∏
i=1

(
ee

−1/βx2α
(i) − 1

e− 1

)θ
−
(
ee

−1/βx2α
(i−1) − 1

e− 1

)θ)1/n+1

. (22)

logA =
1

n+ 1

n+1∑
i=1

log

((
ee

−1/βx2α
(i) − 1

e− 1

)θ
−
(
ee

−1/βx2α
(i−1) − 1

e− 1

)θ)
.

Consider the first order partial derivatives of logA with respect to the parameters and
equate it with zero as

∂ logA

∂α
= 0 =>

2βθ

n+ 1

n+1∑
i=1

(x−2α
(i) log(x(i))e

−1/βx2α
(i)ee

−1/βx2α
(i)

(
ee

−1/βx2α
(i) − 1

)θ−1

(
ee

−1/βx2α
(i) − 1

)θ
−
(
ee

−1/βx2α
(i−1) − 1

)θ

−
x−2α

(i−1) log(x(i−1))e
−1/βx2α

(i−1)ee
−1/βx2α

(i−1)

(
ee

−1/βx2α
(i−1) − 1

)θ−1

(
ee

−1/βx2α
(i) − 1

)θ
−
(
ee

−1/βx2α
(i−1) − 1

)θ )
= 0.

(23)
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∂ logA

∂β
= 0 =>

θ

β2(n+ 1)

n+1∑
i=1

(x−2α
(i) e−1/βx2α

(i)ee
−1/βx2α

(i)

(
ee

−1/βx2α
(i) − 1

)θ−1

(
ee

−1/βx2α
(i) − 1

)θ
−
(
ee

−1/βx2α
(i−1) − 1

)θ

−
x−2α

(i−1)e
−1/βx2α

(i−1)ee
−1/βx2α

(i−1)

(
ee

−1/βx2α
(i−1) − 1

)θ−1

(
ee

−1/βx2α
(i) − 1

)θ
−
(
ee

−1/βx2α
(i−1) − 1

)θ )
= 0.

(24)

∂ logA

∂θ
= 0 =>

1

n+ 1

n+1∑
i=1

( (
ee

−1/βx2α
(i) − 1

)θ
log

(
ee

−1/βx2α
(i)−1

e−1

)
(
ee

−1/βx2α
(i) − 1

)θ
−
(
ee

−1/βx2α
(i−1) − 1

)θ

−

(
ee

−1/βx2α
(i−1) − 1

)θ
log

(
ee

−1/βx2α
(i−1)−1

e−1

)
(
ee

−1/βx2α
(i) − 1

)θ
−
(
ee

−1/βx2α
(i−1) − 1

)θ ) = 0. (25)

The MPS estimator of α, β, and θ that is obtained by solving these systems of equa-
tions, respectively.

5. Simulation Study

A simulation study is a powerful tool used in statistics to assess the performance of
different estimation techniques and statistical methods. It involves generating syn-
thetic data under controlled conditions to evaluate how well various methods perform
with regard to bias, mean squared error (MSE), and other relevant metrics. Here, the
performance of MLE and MPSE methods is evaluated. It shows that the performance
of all methods improved with increasing sample sizes, since the bias and MSE values
are getting close to zero.

Table 1. Simulation studies for the values α = 0.5, β = 1.5, θ = 0.09

Method n bias(α̂) bias(β̂) bias(θ̂) MSE(α̂) MSE(β̂) MSE(θ̂)
25 -0.12773 0.40977 0.73808 0.03892 0.40191 1.29703
50 -0.05500 0.17526 0.31632 0.01682 0.17111 0.55587
80 -0.01916 0.06105 0.11071 0.00583 0.05929 0.19455

MLE 100 -0.01127 0.03605 0.06502 0.00343 0.03518 0.11426
150 -0.00239 0.00759 0.01406 0.00072 0.00721 0.02471
200 -0.00029 0.00099 0.00176 8.9716e-05 0.00097 0.00309
25 0.11542 0.23168 0.00262 0.01789 0.88428 0.00438
50 0.08781 0.13029 0.00141 0.00982 0.31912 0.00142
80 0.06699 0.086942 0.00303 0.00557 0.13665 0.00059

MPS 100 0.06275 0.05143 0.00144 0.00471 0.08694 0.00035
150 0.05521 0.02026 0.00295 0.00343 0.02544 0.00020
200 0.05200 0.01299 0.00347 0.00299 0.02011 0.00014

Table 1 shows the simulation results of the estimation techniques MLE and MPSE.
Based on these results, the performance of the MLE and MPSE techniques for the
PGDUS-PIR(α, β, θ) distribution is evaluated across various sample sizes, and it is
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observed that biases and MSE values in both estimate techniques reduce with increas-
ing sample size.

6. Data Analysis

Dataset 1

Here, a set of 30 data of successive values of precipitation (given in Table 2), measured
in inches, on March for Minneapolis/St Paul is considered, [6].

Table 2. Successive values of March pre-

cipitation for Minneapolis/St Paul

0.77 1.74 0.81 1.20 1.95 1.20
0.47 1.43 3.37 2.20 3.00 3.09
1.51 2.10 0.52 1.62 1.31 0.32
0.59 0.81 2.81 1.87 1.18 1.35
4.75 2.48 0.96 1.89 0.90 2.05

Table 3. Data Analysis
Distribution Estimates K-S(p-value) CVM(p-value) Log(L) AIC BIC

0.85711
PGDUS-PIR MLE 1.52230 0.14442 0.10189 -41.23206 86.46411 89.26651

1.13328 (0.5588) (0.5787)
0.78924

MPS 1.63461 0.1624 0.14461 -41.56992 87.13984 89.94223
1.12751 (0.4074) (0.4082)

DUS-PIR MLE 0.86021 0.14567 0.10189 -41.23814 86.47627 89.27867
1.33230 (0.5476) (0.5691)

MPS 0.79246 0.16364 0.14748 -41.57798 87.15596 89.95836
1.43909 (0.3978) (0.3991)

PIR MLE 0.77480 0.15235 0.12018 -41.91701 87.83402 90.63642
0.01238 (0.4893) (0.4971)

MPS 0.71245 0.1693 0.16686 -42.26779 88.53559 91.33798
1.04413 (0.3562) (0.3434)

Figure 4. Empirical cdf of successive values of precipitation on March for Minneapoolis/St. Paul

The plot of the empirical distribution function (Figure 4) shows that the empiri-
cal distribution of the respective data is close to the theoretical cdf of the proposed
distribution PGDUS-PIR than the other distributions, DUS-PIR and PIR.

Here, the parameters are estimated by implementing the MLE and MPSE
techniques. Goodness of fit is assessed using the Kolmogorov-Smirnov(K-S) test
and Cramer-von Mises(CVM) test with p-value, Akaike Information Criteria(AIC),
Bayesian Information Criteria(BIC) and log-likelihood values.
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The K-S statistic and the CVM statistic for the PGDUS-PIR distribution have the
smallest values, with a high p-value. PGDUS-PIR distribution has the smallest AIC
and BIC and highest log-likelihood values compared to the other distributions, the
DUS-PIR and the PIR distribution, respectively.

Therefore, the data are more appropriate for the PGDUS-PIR distribution than for
the DUS-PIR distribution and the PIR distribution.

Dataset 2

The following data (Table 4) represent the daily cases of COVID-19 throughout the
world reported by WHO(2020) between January 21 and March 27, 2020 ([10]).

Table 4. Daily cases of COVID-19 across the world between January

21 to March 27, 2020

60 32 265 472 698 785 1781 1477
1755 2010 2127 2603 2838 3239 3915 3721
3173 3437 2676 3001 2546 2035 14153 5151
2662 2097 2132 2003 1852 516 977 996
978 554 882 741 992 1292 1503 1989
1981 1858 2573 2298 3111 3625 4049 3892
4390 4567 7266 8295 11059 13042 12897 15745
20585 26158 30648 29429 32480 41371 43744 10907
48461 60830 64501

Table 5. Data Analysis
Distribution Estimates K-S(p-value) CVM(p-value) Log(L) AIC BIC

0.33303
PGDUS-PIR MLE 0.02493 0.14272 0.32399 -669.8411 1343.682 1348.092

2.22725 (0.1182) (0.1157)
0.32126

MPS 0.02989 0.15761 0.39826 -670.0571 1344.114 1348.524
2.15048 (0.064) (0.07274)
0.66612

PGDUS-IK MLE 40.06723 0.1449 0.32648 -670.038 1344.076 1348.485
2.21093 (0.1085) (0.1139)
0.64333

MPS 33.65109 0.16041 0.40375 -670.2468 1344.494 1348.903
2.12648 (0.05665) (0.07034)

DUS-PIR MLE 0.336601 0.15278 0.37525 -670.6239 1345.248 1349.657
0.01031 (0.07863) (0.08381)

MPS 0.32507 0.16774 0.46017 -670.8432 1345.686 1350.096
0.01280 (0.04072) (0.05004)

PIR MLE 0.30463 0.1489 0.38429 -671.8786 1347.757 1352.166
0.01160 (0.09233) (0.07926)

MPS 0.29382 0.16327 0.46393 -672.0963 1348.193 1352.602
0.01418 (0.05090) (0.05093)

Figure 5. Empirical cdf of COVID-19 data and theoretical cdf
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From the analysis values (given in Table 5), the PGDUS-PIR (α, β, θ) distribution
perfectly fits the COVID-19 data set at a reasonable significance level compared to
the other distributions PGDUS-IK, DUS-PIR and PIR, respectively.

The plot of the empirical distribution function (given in Figure 5) shows that the
empirical data align more closely with the theoretical cdf of the PGDUS-PIR distri-
bution compared to the PGDUS-IK, DUS-PIR, and PIR distributions.

7. Stress-Strength Reliability

7.1. Single-component Stress-Strength Reliability

LetX and Y be two independent random variables from PGDUS-PIR distribution with
parameters α, β, θ1 and θ2 respectively. The stress-strength reliability can therefore be
described as

Pr(Y < X) =

∫ ∞
0

f(x)Gy(x)dx

=

∫ ∞
0

2αθ1

β(e− 1)θ1

e−1/βx2α

x2α+1
ee

−1/βx2α(
ee

−1/βx2α

− 1
)θ1−1

(
ee

−1/βx2α

− 1

e− 1

)θ2

dx

=
2αθ1

β(e− 1)θ1+θ2

∫ ∞
0

e−1/βx2α

x2α+1
ee

−1/βx2α(
ee

−1/βx2α

− 1
)θ1+θ2−1

dx

Let u = ee
−1/βx2α

, and can solve the integral as

R =
θ1

θ1 + θ2
, θ1 > 0, θ2 > 0. (26)

Reliability value is proportion of scale parameter of stress distribution.

7.2. Multicomponent Stress-Strength Reliability

[3] first established the reliability of a multicomponent stress-strength model assuming
that a common stress Y , independent of each Xi, can be applied to l identically
distinct strength components X1, X2, ..., Xl. The system with l identical components
will functions if c or more number of components operate simultaneously, where 1 ≤
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c ≤ l. The multicomponent stress-strength model’s reliability is determined by

Rc,l = Pr(at least c of the (X1, X2, ..., Xl) exceeds Y)

=

l∑
i=c

(
l
i

)∫ ∞
0

(
1−G(x)

)i(
G(x)

)l−i
dF (x)

=

l∑
i=c

(
l
i

)∫ ∞
0

(
1−

(
ee

−1/βx2α

− 1

e− 1

)θ1
)i(ee−1/βx2α

− 1

e− 1

)θ1(l−i)

2αθ2

β(e− 1)θ2

e−1/βx2α

x2α+1
ee

−1/βx2α(
ee

−1/βx2α

− 1
)θ2−1

dx

=
2αθ2

β(e− 1)θ2+θ1l

l∑
i=c

(
l
i

)∫ ∞
0

e−1/βx2α

x2α+1
ee

−1/βx2α(
ee

−1/βx2α

− 1
)θ1(l−i)+θ2−1

(
(e− 1)θ1 −

(
ee

−1/βx2α

− 1
)θ1

)i
dx

=
2αθ2

β(e− 1)θ2+θ1l

l∑
i=c

i∑
j=0

(
l
i

)(
i
j

)
(−1)j(e− 1)θ1(i−j)

∫ ∞
0

e−1/βx2α

x2α+1
ee

−1/βx2α(
ee

−1/βx2α

− 1
)θ1(l−i+j)+θ2−1

dx

=

l∑
i=c

i∑
j=0

(−1)j
(
l
i

)(
i
j

)
θ2

θ1(l + j − i) + θ2
, θ1 > 0, θ2 > 0. (27)

For a parallel system, c = 1, then

R1,l =

l∑
i=1

i∑
j=0

(−1)j
(
l
i

)(
i
j

)
θ2

θ1(l + j − i) + θ2
, θ1 > 0, θ2 > 0.

For a series system, c = l, then

Rl,l =

l∑
j=0

(−1)j
(
l
j

)
θ2

jθ1 + θ2
, θ1 > 0, θ2 > 0.

7.3. Estimation Methods

In this section, to get the reliability estimate by assessing the parameter estimation,
we consider the MLE and MPSE methods on both a single- and multicomponent
stress-strength model.

7.3.1. Estimation of Single-component Stress-Strength Model

Maximum Likelihood Estimation

Let x1, x2, ..., xn and y1, y2, ..., ym are independent random variables from PGDUS-
PIR(α, β, θ1) and PGDUS-PIR(α, β, θ2) respectively. Therefor the joint likelihood
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function will be

LR =

n∏
i=1

2αθ1

β(e− 1)θ1

e−1/βx2α
i

x2α+1
i

ee
−1/βx2α

i
(
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j
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j
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j
(
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j − 1

)θ2−1
. (28)

logLR = n log

(
2αθ1

β(e− 1)θ1

)
+m log

(
2αθ2

β(e− 1)θ2

)
− 1

β

( n∑
i=1
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i +

m∑
j=1

y−2α
j

)
+

n∑
i=1

e−1/βx2α
i +

m∑
j=1

e−1/βy2α
j +

n∑
i=1

log(1/x2α+1
i ) +

m∑
j=1

log(1/y2α+1
j )

+ (θ1 − 1)
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i=1

log
(
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−1/βx2α
i − 1

)
+ (θ2 − 1)

m∑
j=1

log
(
ee

−1/βy2α
j − 1

)
.

The estimators of the parameters can be obtained by solving the following system of
equations by any numerical method respectively. That is,

∂ logLR
∂α

= 0 =>

n+m

α
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2
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j log(yj)
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1

β
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i=1
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i log(xi)e
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i +

m∑
j=1
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j log(yj)e

−1/βy2α
j

)
− 2
( n∑
i=1

log(xi) +

m∑
j=1

log(yj)
)

+
2(θ1 − 1)

β

n∑
i=1

e−1/βx2α
i ee

−1/βx2α
i log(xi)
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i
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j=1
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j ee
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j

log(yj)

y−2α
j

(
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) = 0, (29)

∂ logLR
∂β

= 0 =>

− n+m

β
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1
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i (e−1/βx2α

i + 1) +

m∑
j=1
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j (e−1/βy2α
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1

β2

(
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i=1
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i ee
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j ee
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j (ee
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(30)
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∂ logLR
∂θ1

= 0 =>
n

θ1
− n log(e− 1) +

n∑
i=1

log(ee
−1/βx2α

i − 1) = 0, (31)

∂ logLR
∂θ2

= 0 =>
m

θ2
−m log(e− 1) +

m∑
j=1

log(ee
−1/βy2α

j − 1) = 0. (32)

Suppose, α̂ and β̂ are the MLEs of α and β respectively. Then, the MLEs of θ1 and
θ2 are obtained as follows:

θ̂1 =
n

n log(e− 1)−
∑n

i=1 log(ee
−1/β̂x2α̂

i − 1)
,

θ̂2 =
m

m log(e− 1)−
∑m

j=1 log(ee
−1/β̂y2α̂

j − 1)
.

Then, by substituting these values to the reliability (26), we get the estimator of the
stress-strength reliability. That is,

R̂MLE =
θ̂1

θ̂1 + θ̂2

.

Maximum Product Spacing Estimation

Let x(1), x(2), ..., x(n) represents the order statistics of a random sample of size n ob-
tained from PGDUS-PIR (α, β, θ1) and let y(1), y(2), ..., y(m) be another set of order
statistics of a random sample of size m taken from PGDUS-PIR (α, β, θ2), where both
distributions are independent to each other. Then, the uniform spacing of these two
independent samples can be defined as follows:

S1i = F (x(i))− F (x(i−1)),

S2j = G(y(j))−G(y(j−1)).

According to [5], MPS estimate values will maximize the geometric mean of the spac-
ings, which is the difference between the cdf of the consecutive order statistics. So,
here the geometric mean for the combined samples can be represented as

A =

( n+1∏
i=1

S1i

)1/n+1(m+1∏
j=1

S2j

)1/m+1

.
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To obtain the estimator, we need to maximize the function A with respect to each
parameter. For that, take

log(A) =
1

n+ 1
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log(S1i) +
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.

By considering the partial derivative of log(A) with respect to the unknown parameters
α, β, θ1 and θ2 and equate them with zero.
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∂ logA
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Then, by solving these system of equations using any numerical approach, we can
obtain the MPS estimators of each parameter, α̂MPS , β̂MPS , θ̂1MPS , and θ̂2MPS re-
spectively. Then by replacing this estimator values in (26), MPS estimator of reliability
in stress-strength model can be obtain in the form

R̂MPS =
θ̂1MPS

θ̂1MPS + θ̂2MPS

.

7.3.2. Estimation of Multicomponent SSR

Maximum Likelihood Estimation

Let n be the sample size and assume that Xi1, Xi2, ..., Xil and Yi, i = 1, 2, ..., n be
the observed data from PGDUS-PIR(α, β, θ1) and PGDUS-PIR(α, β, θ2) respectively.
Hence, the likelihood function of these unknown parameters can be written as
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(37)

logLc,l = n(l + 1)
(

log 2 + log(α)− log(β)
)

+ nl log(θ1)− n(lθ1 + θ2) log(e− 1)
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Maximize the function logLc,l with respect to each unknown parameters to obtain its
estimators. For that, consider the partial derivative of logLc,l with respect to α, β, θ1
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and θ2 and equate them with zero. That is,

∂ logLc,l
∂α

= 0 =>

n(l + 1)

α
− 2
( n∑
i=1

m∑
j=1

log(xij) +

n∑
i=1

log(yj)
)

+
2

β

( n∑
i=1

m∑
j=1

log(xij)

x2α
ij

+

n∑
i=1

log(yj)

y2α
i

)

− 1

β

( n∑
i=1

m∑
j=1

e−1/βx2α
ij log(xij)

x2α
ij

+

n∑
i=1

e−1/βy2α
i log(yj)

y2α
i

)

+
2(θ1 − 1)

β

n∑
i=1

m∑
j=1

log(xij)e
−1/βx2α

ij ee
−1/βx2α

ij

x2α
ij (ee

−1/βx2α
ij − 1)

+
2(θ2 − 1)

β

n∑
i=1

log(yi)e
−1/βy2α

i ee
−1/βy2α

i

y2α
i (ee

−1/βy2α
i − 1)

= 0

(38)

∂ logLc,l
∂β

= 0 =>

−n(l + 1)

β
+

1

β2

( n∑
i=1

m∑
j=1

(ee
−1/βx2α

ij
+ 1)

x2α
ij

+

n∑
i=1

(ee
−1/βy2α

i + 1)

y2α
i

+ (θ1 − 1)

n∑
i=1

m∑
j=1

e−1/βx2α
ij ee

−1/βx2α
ij

x2α
ij (ee

−1/βx2α
ij − 1)

+ (θ2 − 1)

n∑
i=1

e−1/βy2α
i ee

−1/βy2α
i

y2α
i (ee

−1/βy2α
i − 1)

)
= 0

(39)

∂ logLc,l
∂θ1

= 0 =>
nl

θ1
− nl log(e− 1) +

n∑
i=1

m∑
j=1

log
(
ee

−1/βx2α
ij − 1

)
= 0 (40)

∂ logLc,l
∂θ2

= 0 =>
n

θ2
− n log(e− 1) +

n∑
i=1

log
(
ee

−1/βy2α
i − 1

)
= 0 (41)

By solving above equations, we can obtain the parameter estimators respectively.
Suppose, α̂ and β̂ are the MLEs of α and β, then we can obtain θ̂1 and θ̂2 as follows:

θ̂1 =
nl

nl log(e− 1)−
∑n

i=1

∑m
j=1 log

(
ee

−1/βx2α
ij − 1

) ,
θ̂2 =

n

n log(e− 1)−
∑n

i=1 log
(
ee

−1/βy2α
i − 1

) .
Then, by substituting these estimator to the reliability (27), obtain the reliability
estimator in multi component stress-strength model. That is,

R̂c,l−MLE =

l∑
i=c

i∑
j=0

(−1)j
(
l
i

)(
i
j

)
θ̂2

θ̂1(l + j − i) + θ̂2

.
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Maximum Product Spacing Estimation

Let x(1), x(2), ..., x(nl) and y(1), y(2), ..., y(n) are the ordered observed data, taken from
PGDUS-PIR (α, β, θ1) and PGDUS-PIR (α, β, θ2) independent distributions with cdf
F (x) and G(y) respectively. MPS estimators are the parameter values that maximizes
the geometric mean of the uniform spacings of random samples. Let

S1j = F (x(j))− F (x(j−1)), j = 1, 2, ..., n,

and

S2i = G(y(i))−G(y(i−1)), i = 1, 2, ..., n

are the uniform spacing of the sample from each distributions. Then, the geometric
mean of the combined sample will be the form

AM =

( nl+1∏
j=1

S1j

)1/nl+1( n+1∏
i=1

S2i

)1/n+1

.

By taking its partial derivative with respect to θ1 and θ2 and equating it with zero,
and solving by any numerical method, we get MPS estimators. That is,

∂ logAM
∂θ1

= 0 =>

1

nl + 1

nl+1∑
j=1

( (
ee

−1/βx2α
(j) − 1

)θ1

log

(
ee

−1/βx2α
(j)−1

e−1

)
(
ee

−1/βx2α
(j) − 1

)θ1

−
(
ee

−1/βx2α
(j−1) − 1

)θ1

−

(
ee

−1/βx2α
(j−1) − 1

)θ1

log

(
ee

−1/βx2α
(j−1)−1

e−1

)
(
ee

−1/βx2α
(j) − 1

)θ1

−
(
ee

−1/βx2α
(j−1) − 1

)θ1

)
= 0. (42)

∂ logAM
∂θ2

= 0 =>

1

n+ 1

n+1∑
i=1

( (
ee

−1/βy2α
(i) − 1

)θ2

log

(
ee

−1/βy2α
(i)−1

e−1

)
(
ee

−1/βy2α
(i) − 1

)θ2

−
(
ee

−1/βy2α
(i−1) − 1

)θ2

−

(
ee

−1/βy2α
(i−1) − 1

)θ2

log

(
ee

−1/βy2α
(i−1)−1

e−1

)
(
ee

−1/βy2α
(i) − 1

)θ2

−
(
ee

−1/βy2α
(i−1) − 1

)θ2

)
= 0. (43)
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Then by substituting the parameter estimates θ̂1M−PS and θ̂2M−PS in (27), we get
the reliability estimator of the model. That is,

R̂c,l−MPS =

l∑
i=c

i∑
j=0

(−1)j
(
l
i

)(
i
j

)
θ̂2M−PS

θ̂1M−PS(l + j − i) + θ̂2M−PS
.

7.4. Simulation Study

Simulation study for single-component and multi-component stress-strength models
are carried out to examine the reliability performance with respect to their biases and
MSE values. Here, we consider both MLE and MPSE methods in each model.

Table 6. Simulation study for Stress-Strength reliabil-

ity for α = 0.3, β = 0.8, θ1 = 0.07, θ2 = 0.09, R = 0.4375

method (n,m) R̂ Bias MSE
(10,10) 0.54772 -0.43202 0.18962
(25,25) 0.55938 -0.42352 0.18699

MLE (50,50) 0.52957 -0.41102 0.18226
(100,100) 0.53028 -0.38447 0.17313
(200,200) 0.53028 -0.33144 0.15485
(10,15) 0.55741 0.08684 0.04449
(30,25) 0.52377 0.08156 0.01762
(50,50) 0.48978 0.05107 0.00861

MPS (80,90) 0.47942 0.04106 0.00543
(100,100) 0.45481 0.01845 0.00296
(200,150) 0.43057 -0.00492 0.00145

Table 7. Simulation study for Multicomponent Stress-

Strength reliability for α = 0.3, β = 0.8, θ1 = 0.7, θ2 = 0.9,
R3,6 = 0.49574, R2,8 = 0.72785

Method (c,l) n R̂cl Bias MSE
MLE 10 0.28401 -0.21173 0.04483

30 0.43965 -0.05609 0.00315
(3,6) 80 0.48507 -0.01067 0.00012

100 0.49062 -0.00511 2.615e-05
150 0.49461 -0.00112 1.262e-06
10 0.66154 -0.06631 0.00439
30 0.67101 -0.05684 0.00323

(2,8) 80 0.74944 0.02159 0.00047
100 0.73936 0.01151 0.00013
150 0.72481 -0.00304 9.2655e-06

MPS 10 0.20951 -0.28622 0.081924
30 0.38445 -0.11129 0.01238

(3,6) 80 0.46522 -0.03052 0.00093
100 0.51151 0.01578 0.00025
150 0.49246 -0.00328 1.073e-05
10 0.55577 -0.17208 0.02961
30 0.66128 -0.06657 0.00443

(2,8) 80 0.75970 0.03185 0.00102
100 0.73889 0.01104 0.00012

Table 6 shows the simulation results for a single component stress-strength model
with initial parameter values as (0.3, 0.8, 0.07, 0.09) respectively. The calculated value
of the reliability is 0.4375. Here, we are considering different sets of the sample size in
each estimation method and it is shows that the bias and MSE values of the reliability
measure decrease with increasing sample size.

Table 7 gives the simulation results of a multicomponent stress-strength model for
MLE and MPSE methods by considering two sets of (c, l) = {(3, 6), (2, 8)} and initial
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parameter values (0.3, 0.8, 0.7, 0.9) respectively. The calculated reliability measures are
R3,6 = 0.49574 and R2,8 = 0.72785. In both MLE and MPSE methods, for each set of
(c, l), the bias and MSE values of the reliability measure reduce with larger samples.

8. Data Analysis

Consider the computation of Pr(Y < X) for the carbon fiber data given in [2]. We
used Kolmogorov-Smirnov(K-S) statistic and CVM statistic with p-values to check the
fit of the model.

Here, we have two data that reflect the GPA strength of single carbon fibers at two
different lengths. In this analysis work, Y represents the GPA strength of the carbon
fiber with length 10mm (Table 8) and X represents the GPA strength of the carbon
fiber with length 20mm (Table 9) respectively.

Table 8. Carbon Fibers Data with length of 10mm
1.901 2.132 2.203 2.228 2.257 2.350 2.361 2.396 3.886
2.397 2.445 2.454 2.474 2.518 2.522 2.525 2.532 3.971
2.575 2.614 2.616 2.618 2.624 2.659 2.675 2.738 4.024
2.740 2.856 2.917 2.928 2.937 2.937 2.977 2.996 4.027
3.030 3.125 3.139 3.145 3.220 3.223 3.235 3.243 4.225
3.264 3.272 3.294 3.332 3.346 3.377 3.408 3.435 4.395
3.493 3.501 3.537 3.554 3.562 3.628 3.852 3.871 5.020

Table 9. Carbon Fibers Data with length of 20mm
1.312 1.314 1.479 1.552 1.700 1.803 1.861 1.865 1.944
1.958 1.966 1.997 2.006 2.021 2.027 2.055 2.063 2.098
2.14 2.179 2.224 2.240 2.253 2.270 2.272 2.274 2.301
2.301 2.359 2.382 2.382 2.426 2.434 2.435 2.478 2.490
2.511 2.514 2.535 2.554 2.566 2.57 2.586 2.629 2.633
2.642 2.648 2.684 2.697 2.726 2.770 2.773 2.800 2.809
2.818 2.821 2.848 2.88 2.954 3.012 3.067 3.084 3.090
3.096 3.128 3.233 3.433 3.585 3.585

Here, we used MLE and MPS estimation techniques to compute the estimate of
Pr(Y < X).

Table 10. Data Analysis

Method R̂ K-S (p-value) CVM (p-value)
MLE 0.40491 X 0.096102 0.087031

(0.6057) (0.6538)
Y 0.12654 0.34922

(0.2191) (0.0986)
MPSE 0.46612 X 0.1042 0.11219

(0.5008) (0.5296)
Y 0.14846 0.4724

(0.09551) (0.0501)

From Table 10, we can observe that the carbon fiber data fit the PGDUS-PIR
distribution, since the p-value ≥ 0.05 and we obtained the estimate values of the
Pr(Y < X) model using both MLE and MPSE methods.

9. Summary

In this work, we applied the PGDUS transformation to the PIR distribution to cre-
ate a new lifetime distribution called PGDUS-PIR with parameters α, β, and θ. This
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distribution is applicable to the reliability analysis of the parallel system. Basic statis-
tical properties such as moments, quantile functions, order statistics, and entropy are
derived. Figure 1, Figure 2 and Figure 3 show the pdf, cdf, and failure rate plot of the
PGDUS-PIR distribution for different values of parameters. To estimate the unknown
parameters α, β, and θ, the maximum likelihood and maximum product spacing es-
timation methods were used. The simulation studies’ findings (Table 1) demonstrate
that for both the MLE and MPSE approaches, parameter values, since biases and the
MSE decrease with increasing sample size. To show the effectiveness and applicabil-
ity of the proposed distribution, it was fitted to two real-life datasets, one is a set of
successive values of precipitation on March for Minneapolis/St.Paul and another that
documents the daily cases of COVID-19 across the world reported by WHO(2020).
Compared to alternative distributions such as PGDUS-inverse Kumaraswamy, DUS-
powered inverse Rayleigh, and the powered inverse Rayleigh distribution, the proposed
distribution, PGDUS-powered inverse Rayleigh distribution provided the best fit (see
Table 3 and Table 5). The empirical cdf of the successive values of March precipitation
for Minneapolis/St.Paul and the theoretical cdf of PGDUS-PIR, DUS-PIR, and PIR
are shown in Figure 4. Similarly, the empirical cdf and the theoretical cdf of PGDUS-
PIR, PGDUS-IK, DUS-PIR and PIR for daily cases of COVID-19 data are shown in
Figure 5.

The concept of single- and multicomponent stress-strength reliability is discussed.
We assumed that the stress variable and the strength variable are distributed as in-
dependent PGDUS-PIR distributions. We found that reliability could be estimated in
both single- and multicomponent stress-strength models using the MLE and MPSE
approaches. Based on simulation studies conducted for both models (Table 6 and
Table 7), it can be observed that the estimated reliability values are close to their
distributional values and the biases and MSEs decrease with increasing sample size.
The computation of Pr(Y < X) in practical situations was demonstrated by the GPA
strength of single carbon fibers with lengths of 10 mm and 20 mm. The goodness
of fit of the estimators for each data set was assessed using K-S statistics and CVM
statistics with p-values, and the outcomes were adequate and satisfactory.

Thus, the PGDUS-PIR distribution turns out to be a more accurate model for
the data in hand than the PGDUS-IK, DUS-PIR, and PIR distributions. Further data
analysis with censored observations, PH model analysis, etc still needs to be addressed.
That is left for future work.
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